
ve
r.

20
15

/0
5/

26

Class Notes for Applied Probability and Statistics

Mark Siggers

ver .2015/05/26

These notes are for a upper undergraduate or first year grad course on Prob-
ability and Statistics, and are largely based on Hogg, McKean, and Craig’s ‘In-
troduction to Mathematical Statistics’ (International Seventh edition) which we
refer to as [1], or as ‘the text’. Section numbering follows the text, and problem
numbers often refer to the text. Problems within the notes are usually quite
easy, checking that we know definitions, and making simple observations that
we will use later. It is important to look also at the problems from the text.

We also add in a couple of applications of probability to problems in graph
theory as examples of non-statistical applications of probablility. The reference
for this is Alon and Spencer’s ‘The Probabilistic Method’, (or lecture notes of
the same name by Matoušek and Vondrák.)

1 Probability and Distributions

1.1 Introduction

Probabililty theory in its pure form has much of the flavour of real analysis.
In this course on applied probability theory, we try to avoid this formality not
by sacrificing rigour, but by avoiding exceptional cases. We generally assume
things to be nice. Our goal is to get an introduction to how probablility can be
applied, both in statistics and in mathematics.

Probability theory for statistics is concerned with random experiments -
experiments that can be repeated several times, under the same conditions,
and have different outcomes. They are characterised by the fact that we cannot
predict the outcome of an individual experiment but can predict the frequency
of the outcome over many repetitions of the experiment.

For example, an experiment might consist of tossing a coin. We cannot
predict whether the outcome will be heads or tails, but if we toss the same coin
100 times, we are all going to guess that the outcome will be heads 50 times.

Would we bet on it though? Would you take the following bet? You pay
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�1000 and toss a coin 100 times. If the outcome is heads exactly 50 times, you
win �2000.

Probably not. Would you take the bet if you win in the case that the outcome
is heads between 40 and 60 times? This is the kind of question that probability
theory lets us address.

In statistics we will not be really be interested in probability that a coin
comes up heads, but perhaps we will be interested in the probability that a
given person in a population tests positive for some disease. Our goal will be
to look at the data of an experiment, estimate such a parameter, and then give
some measure of how good our estimate is.

One the other hand, the application of probability to mathematics is usually
a way of counting structures, and through this, determining properties that
most of the structures have, or showing that a structure with a given property
must exist.

For example, by constructing a graph by randomly adding an edge between
any two vertices with some given probability, and then calculating the proba-
bilities that the graph has small cycles or large independent sets, we show the
existence of graphs of large girth and large chromatic number.

The obvious commonality in these applications is the notion of something
happening randomly. This brings us to random variables, which are the starting
point of our course.

1.2 Set Theory

We will generally consider sets of points in R or Rn, such as

C = {(x, y)|x ∈ R, y = 2x}.

The union and intersection of sets are denoted standardly by such notation
as C1 ∪ C2, ∪ki=1Ci, ∪∞i=1Ci, C1 ∩ C2, ∩ki=1Ci, and ∩∞i=1Ci.

The empty set, or null set is often (but not always) denoted in [1] by φ, but
I will use the more standard ∅.

Subsets are denoted C1 ⊂ C2 and may be equal. A set C is usually assumed
to be a subset of and underlying universe C , and the complement of a set C is
defined as

Cc = C − C = {x ∈ C | x 6∈ C}.

(The notation X will play a different role.)

Recall the following basic set laws.

i) C ∪ Cc = C .
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ii) C ∩ Cc = ∅.

iii) C ∪ C = C .

iv) C ∩ C = C.

v) (C1 ∪ C2)c = Cc1 ∩ Cc1 (Demorgan).

vi) (C1 ∩ C2)c = Cc1 ∪ Cc1.

Definition 1.2.1. The powerset P(C ) of a set C is the set of all sets in C .
A σ-algebra of C is a subset B ⊂ P(C ) that contains C , and is closed under
complements, countable unions and countable intersections. A set function on
C is a function F : B→ Rex = R ∪ {±∞} for some σ-algebra of C .

For any set C , the powerset P(C ) is clearly a σ-algebra. A set function F

defined on a σ-algebra B of C can be inocuously extended to a set function on

P(C ) by setting it equal to 0 on any set not in B. So we often omit explicit

mention of a σ-algebra, taking it as P(C ).

Note

Example 1.2.2. The cardinality map | · |, acting like:

|{1, 3, 5, 6, 7}| = 5,

is a set function on any finite set C . Its range is the natural numbers N ⊂ R.

Example 1.2.3. The area function Q is a set function on R2.

� Q({(x, y) | x, y ∈ [0, 1]}) = 1.

� Q({(x, y) | |(x, y)− 0| ≤ 1}) = 2π.

� Q({(x, y) | y = 2x}) = 0.

� Q({(x, y) | x ≥ 0}) =∞.

The area function is really just an integral. More generally for any function
f : Rn → R we have a set function Qf on Rn defined by

Qf (C) =

‹
C

f(~x) d~x.

Example 1.2.4. Let Q = Qe−x then for C = [0,∞) ∈ R, we have:

Q(C) =

ˆ ∞
0

e−x dx = lim
N→∞

ˆ N

0

e−x dx

= lim
N→∞

(−e−x) |Nx=0

= lim
N→∞

(−e−N + e0) = 0 + 1 = 1

3



ve
r.

20
15

/0
5/

26

The support of a function f : C → R is the subset Supp(f) ⊂ C defined by

Supp(f) = {x ∈ C | f(x) 6= 0}.

Observe that for the set function Qf , Qf (S) = Qf (S ∩ Supp(f)) for any S ∈
P(C ). As such, we often assume that C = Supp(f) for some f .

Problem 1.2.5. Show that if B is a σ-algebra of C , and f is a function on C ,
then the family

{S ∩ Supp(f) | S ∈ B}

is a σ-algebra of Supp(f).

Now, it is clear that for any f : Rn → R with finite or countable support,
Qf = 0. In such cases, we will consider a discrete analogue Qf (C) =

∑
x∈C f(x).

Example 1.2.6. Let f : R → R be defined by f(x) = (1/2)x for x ∈ Z+

(positive integers) and f(x) = 0 otherwise. Then

Qf ({x ∈ N | x < 3}) = 1/2 + 1/4 = 3/4

and

Qf (R) = Qf (Z+) = 1/2 + 1/4 + · · · = 1.

This is our first introduction to what will become a consistant theme in the
course: concepts and definitions will frequently have continuous and discrete
versions.

Section 1.2: 1,5,6,8,11,14,16

Problems from the Text

1.3 The Probability Set Function

Definition 1.3.1. A probablility set function on a set C is a set function P on
(some σ-algebra B of ) C such that

i) P (C) ≥ 0 for all C ⊂ B.

ii) P (C ) = 1.

iii) P is countably additive: for a family {Cn}n∈N of pairwise disjoint sets
Cn ⊂ B,

P (∪∞n=1Cn) =

∞∑
n=1

P (Cn).
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We are now ready to define the basic setup that we will assume throughout
the course.

Definition 1.3.2. A (random) experiment or a probability space consists of a
set C , and a probability set function P defined on a as σ-algebra B of C . We call
C the sample space, and elements of B the events. Elements x ∈ C are called
outcomes, or sometimes, viewed as singleton sets in B, elementary events.

Often a probability function, expecially for finite (discrete) C , is defined
additively by its value on elementary events.

Example 1.3.3. Tossing a coin is a random experiment with two outcomes:
C = {H,T}. The probablility function on C is defined by P ({H}) = 1/2 by
additivity eg.:

P ({T}) = P (C − {H}) = P (C )− P ({H}) = 1− 1/2 = 1/2.

For elementary events like {H}, we will write P (H) for P ({H}).

Example 1.3.4. Tossing two identical coins is a random experiment with three
possible outcomes: C = {HH,HT, TT}. The probability function is defined by
P (HH) = P (TT ) = 1/4 and P (HT ) = 1/2. The event C = {HT,HH} has
probability P (C) = 3/4.

Given a random experiment, we often define events non-formally: the event
C = {HT,HH} can be described as the event that ‘at least one head is tossed’.
We would say ‘The probability that at least on head is tossed is 3/4.’ and write
P ( at least on head is tossed ) = 3/4.

Problem 1.3.5. Tossing two non-identical coins is an experiment with four
possible outcomes: C = {HH,HT, TH, TT}. What is the probability that at
least one head is tossed?

Problem 1.3.6. Let C be the set of 36 possible outcomes

{(i, j) | i, j ∈ [6]}

when two different dice are rolled. What is the probablility of the following
events (assuming that each outcome is equally likely)?

i) i+ j = 7

ii) i+ j is even

iii) i > j.

Example 1.3.7. A p-coin is a coin that when tossed, shows heads with prob-
abilty p and shows tails with probability 1 − p. Tossing a p-coin is a random
experiment wtih C = {H,T} such that P (H) = p and P (T ) = 1 − p. ( A
1/2-coin is called a fair coin.)
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Unless otherwise stated, when we talk about events, it is always assumed
that they are events of a sample space C with a probabilitiy set function P .

Theorem 1.3.8. For events C,C1 and C2, the following hold.

i) P (Cc) = 1− P (C).

ii) P (∅) = 0.

iii) C1 ⊂ C2 ⇒ P (C1) ≤ P (C2).

iv) 0 ≤ P (C) ≤ 1.

v) P (C1 ∪ C2) = P (C1) + P (C2)− P (C1 ∩ C2).

Proof. All of these are pretty easy using the additivity of P .

Now, the above theorem immediately yields the following which is known as
Bonferroni’s Inequality.

P (C1 ∩ C2) ≥ P (C1) + P (C2)− 1. (1)

A sequence of events {Cn} is non-decreasing if Cn ⊂ Cn+1 for each n. A
sequence {Dn} is non-increasing if Dn ⊃ Dn+1. In this case we often write
limn→∞ Ci for ∪∞n=1Ci and limn→∞Di for ∩∞n=1Di.

Given a non-decreasing sequence {Cn} of events, if we let Rn+1 = Cn+1−Cn
for each n, then the events Rn are pairwise disjoint, and so by the additivity of
P we have that

P ( lim
n→∞

Cn) = P (∪∞n=1Cn) = P (∪∞n=1Rn) =

∞∑
n=1

P (Rn)

= lim
n→∞

n∑
i=1

P (Ri) = lim
n→∞

P (Ci).

That is, we can interchange P and the limit. We have essentially shown the
’non-decreasing’ part of the following.

Theorem 1.3.9. Let {Cn} be a non-decreasing or a non-increasing sequence
of events. Then

lim
n→∞

P (Cn) = P ( lim
n→∞

Cn).

Problem 1.3.10. Prove the above theorem for a non-increasing sequence of
events.

Using C ′n = Cn−∪n−1
i=1 Ci instead of Rn in given proof of the above theorem,

we get the following.
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Theorem 1.3.11 (Boole’s Inequality). Let {Cn} be a sequence of events. Then

P (∪∞n=1Cn) ≤
∞∑
n=1

P (Cn).

Example 1.3.12. In a experiment, you flip a coin until you get two consecutive
heads or two consecutive tails. The sample space is

C = {HH,TT,HTT, THH,HTHH,THTT,HTHTT, THTHH, . . . }.

What is the probabilitly that the experiment ends with an H?

Letting Ci be the event that we finish with two heads in at most i flips, we
get that P (C2) = P ({HH}) = 1/4, P (C2) = P ({HH,THH}) = 1/4+1/8, and
in general that P (Cn) = 1/4 + 1/8 + . . . 1/2n. By Theorem , we get that the
probability C = ∪∞i=2Ci that the experiment ends in two heads is

P (C) = P (∪∞n=2Cn) = lim
n→∞

(

n∑
i=2

1/2i) =

∞∑
i=2

1/2i = 1/2.

There is another easy way to do the above examples. Assuming that the
experiment ends, it is easy to see, by symmetry, that it is equally likely to end
with H or with T , so with probability 1/2 it ends with H. This uses conditional
probability, which we will see next section, but still it must be shown that the
experiment ends. Or more precisely, it must be shown that the probability that
the experiment ends is 1.

Section 1.3: 1,3,5,8,10,13,15,20

Problems from the Text

1.4 Conditional Probability

In an experiment with some event CA of probability 1/3, and another event CB
of probability 1/2, does the knowledge that CA occurs affect the probability
that CB occurs?

It can.

In the following picture let CA be the event that a randomly placed dot in
C is placed in the orange region and CB be the event that a randomly placed
dot in C is placed in the blue region.
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In the first picture, knowing that event CA happened doesn’t affect the
probability of event CB . In the second picture, the fact that CA has occured
implies that event CB definitely occurs.

In the first picture, the events CA and CB are independent and in the second
picture they are not. Let’s give this a mathematical definition.

1.4.1 Conditional probability and independence

Definition 1.4.1. For events C1 and C2, the conditional probability of C1 given
C2 is

P (C1 | C2) =
P (C1 ∩ C2)

P (C2)
.

The events C1 and C2 are independent if P (C1 | C2) = P (C1).

Notice that if two events C1 and C2 are independent then we have that

P (C1) = P (C1 | C2) = P (C1∩C2)
P (C2) and so

P (C1) · P (C2) = P (C1 ∩ C2). (2)

And indeed this is an alternate definition of the independence of events, and
because of this, independent is sometimes called multiplicity.

Example 1.4.2. In the experiment C = {(i, j) | i, j ∈ [6]} where we roll two
independent dice. We define the events C1 : i ≤ 3, C2 : j ≤ 3, and C3 : i+j = 8.
Intuitively, we feel that the events C1 and C2 should be independent, while C3

should depend on either of them. Indeed, we see, among other things that
P (C1) = P (C2) = 1/2, P (C3) = 5/36, P (C1 ∩ C2) = 9/36 = 1/4, and

P (C3 ∩ C1) =
|{(2, 6), (3, 5)}|

36
= 1/18.

This gives the conditional probabilities,

� P (C1 | C2) = P (C1 ∩ C2)/P (C2) = (9/36)/(3/36) = 1/2 = P (C1),

� P (C2 | C1) = P (C2 ∩ C1)/P (C1) = (1/6)/(1/3) = 1/2 = P (C2), and

� P (C3 | C1) = P (C3 ∩ C1)/P (C1) = (2/36)/(3/6) = 1/9 6= 5/36 = P (C3).
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We conclude that C1 is independent of C2 and C2 is independent of C1, but C3

is not independent of C1.

Notice that C1 and C2 were independent of each other. This should be
expected, as it is clear from (2) that independence is a symmetric relationship.
Here are some other obvious facts.

i) P (C1 | C1) = 1.

ii) P (C1 | C2) = P (C1 ∩ C2 | C2).

iii) For fixed C2 the function P (· | C2) : P(C ) → R : C1 7→ P (C1 | C2) is a
probability set function.

iv) P (C1 ∩ C2) = P (C2)P (C1 | C2) = P (C2)P (C2 | C1).

This last fact can be extended to more events

P (C1 ∩ C2 ∩ C3) = P (C1 ∩ C2) · P (C3 | C1 ∩ C2)

= P (C1) · P (C2 | C1) · P (C3 | C1 ∩ C2)

and used as a way to calculate the probability of an intersection of events.

Example 1.4.3. There is a bucket 10 different coloured jelly-beans. In an
experiment you reach your hand into the bucket and pull out 3 jellybeans unseen.
The probability of the that we pull blue, green, and red, is 1/

(
10
3

)
. But we

can compute this another way. The probability P (Cb) that one of the chosen
jellybeans is blue is P (Cb) =

(
9
2

)
/
(

10
3

)
, the probability that one of the other two

is green is P (Cg | Cb) = 8/
(

9
2

)
and the probability that the final one is red is

P (Cr | Cg ∩ Cb) = 1/8.

This checks out, as (
9
2

)(
10
3

) · 8(
9
2

) · 1

8
=

1(
10
3

) .
We have been using the notion of independence implicitly in some of our

examples. In the experiment when we tossed two coins, we said the probability
of the outcome, say HH, was P (HH) = 1/4. We were assuming that the
outcome of the second toss was independent of the outcome of the first. In this
case we say that the two tosses, or experiments, are independent.

We also assumed independence of the two dice rolls in the two dice experi-
ment.
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1.4.2 Bayes Theorem

Let the events C1, . . . , Cn be a partition of the sample space C ; that is, assume
that

i) Ci and Cj are independent for i 6= j ∈ [n], and

ii)
⋃
Ci = C .

The the outcome of an experiment on C must be in exactly one of the C1, and
so for any event C we have that

P (C) =
n∑
i=1

P (C ∩ Ci) =

n∑
i=1

P (C | Ci) · P (Ci). (3)

Example 1.4.4. Consider the following experiment:

i) Flip a 1/3-coin A.

ii) If A shows heads, flip a 1/3-coin B1; if A shows tails, flip a 1/2 coin B2.

Let C1 be the event that we flip B1, and C2 be the event that we flip B2.
Let CH be the event that the second coin we flip shows heads.

Now it is easy to compute P (CH |C1) = 1/3, and say,

P (CH) = P (CH |C1) ·P (C1)+P (CH |C2) ·P (C2) = (1/3 ·1/3)+(2/3 ·1/2) = 4/9.

But what is P (C1 | CH)? Intuitively, we see that in the computation of
P (CH), 1/9 of the 4/9 came from the case when C1 held. So P (C1 | CH) = 1/4.

This is exactly what Bayes Theorem says.

Theorem 1.4.5 (Bayes Theorem). Let the events C1, . . . , Cn ∈ B be a partition
of the sample space C , and C ∈ B. Then for any j ∈ [n],

P (Cj | C) =
P (C ∩ Cj)∑n
i=1 P (C ∩ Ci)

=
P (Cj)P (C | Cj)∑n
i=1 P (Ci)P (C | Ci)

.

Proof. Indeed,

P (Cj | C) =
P (C ∩ Cj)
P (C)

=
P (C | Cj)P (Cj)

P (C)
.

Putting (3) in the bottom of the right-hand side gives the identity.
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Example 1.4.6. Plants 1, 2 and 3 produce respectively 10%, 50%, and 40%
of the light bulb produced by a lightbulb company. Light bulbs made in these
plants are defective with probabilities .01, .03, and .04 respectively. What is the
probability that a randomly chosen defective lightbulb was produced in plant
1?

By Bayes Theorem the probabilitly is

.10 ∗ .01

(.10 ∗ .01) + (.50 ∗ .03) + (.40 ∗ .04)
=

1

32
.

1.4.3 Mutual Independence

Definition 1.4.7. Events C1, . . . , Cn are pairwise independent if for all i 6= j,
Ci and Cj are independent: P (Ci ∩ Cj) = P (Ci) · P (Cj). They are mutually
independent if for all S ⊂ [n],

P (
⋂
i∈S

Ci) =
∏
i∈S

P (Ci).

Problem 1.4.8. Show that a family of independent events need not be mutually
independent.

Hint

Problem 1.4.9. Show that if C1, . . . , Cn are mutually independent, then so
are

i) C1 ∪ C2 and C3, or

ii) Cc1 ∩ C2 and C3.

Section 1.4: 6,8,11,18,23,30,34

Problems from the Text
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A The Probabilistic Method

The Probabilistic Method is a technique that uses probability to prove the
existence of a structure having certain properties. The main random structure
we will consider is the random graph model introduced by Erdős and Rényi in
1959.

A.1 The Erdős Rényi Random Graph

Definition A.1.1 (The Erdős Rényi Random Graph). The random graph Gn,p
on n vertices [n] is constructed as follows. For each pair of vertices u, v the edge
(u, v) is in Gn,p with probability p, independent of the existence of other edges.

We view the random graph Gn,p as a sample space, containing 2(n2) basic
outcomes, each being a (labelled) graph on n vertices. The probability that Gn,p
is a given graph H on the vertices [n] depends on the number of edges of H. If

H has |E(H)| = m edges, then the probability that Gn,p = H is pm(1−p)(
n
2)−m.

Problem A.1.2. Show that when p = 1/2, P (Gn,p = H) is the same for every
graph H.

In applications of the Probabilistic Method we show that the event S that
Gn,p has certain properties with has positive probability. In the case that p =
1/2, such an argument can usually be reformulated as a counting argument,
showing that the number of graphs on n vertices without the property is less

than 2(n2). Our first example is such a case, but we quickly get into examples
that are hard to do without probabilistic ideas.

A.2 Ramsey Numbers

Definition A.2.1. Recall that an independent set in a graph is a subset of
the vertices which induces no edges, and a clique in a graph is a subset of the
vertices which induces a complete graph. The ramsey number R(i, k) is the
minimum number of vertices n such that any graph G on n vertices contains
either a independent set of size i or a clique of size k.

Ramsey showed in 1933 that R(i, k) exists for all i and k, but finding the ac-
tual value of R(i, k) is notoriously difficult. The current bounds for the diagonal
case i = k are approximately

√
2
k
< R(k, k) < 4k,

and we only know R(k, k) exactly when k ≤ 4.

We use the Probabilistic Method to get the above lower bound.

13
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Theorem A.2.2. For k ≥ 3, R(k, k) > 2k/2−1.

Proof. Let n ≤ 2k/2−1. The idea is to show that in the random graph G =
Gn,1/2, the probability of the event: ’there is a clique of size k or an independent
set of size k’ is strictly less than one, so that there exists a graph with no such
substructure.

Indeed, the probability that there is a clique of size k on a given set of k

vertices in G is (2)−(k2) and there are
(
k
2

)
such sets, so using the subadditivity

of probability for non-independent events, ( part (v) of Theorem 1.3.8 ) the

probability of a clique of size k is at most
(
n
k

)
2−(k2). Similarily, the probablility of

an independent set of size k is at most
(
n
k

)
2−(k2), and so , again by subadditivity,

the probability of either a clique or an independent set of size k is less than

2
(
n
k

)
2−(k2).

But then

n < 2k/2−1 ⇒ nk < 2
k2−k

2 = 2(k2)

⇒ 2

(
n

k

)
< 2 · n

k

k!
< nk < 2(k2)

⇒ 2

(
n

k

)
2−(k2) < 1.

So if n < 2k/2−1, there exist graphs on n vertices with no clique or indepen-
dent set of size k. Thus R(k, k) > 2k/2−1.

A.3 Erdős-Ko-Rado

A family F ⊂
(

[n]
k

)
of k-element subsets of [n], is intersecting if every pair

A,B ∈ F of sets in the family have non-empty intersection: |A ∩B| > 1.

The family F0 = {A ∈
(

[n]
k

)
| 1 ∈ A} of all sets containing a given element,

is clearly intersecting, and has size
(
n−1
k−1

)
. The following theorem shows that no

intersecting family can be bigger.

Theorem A.3.1 (Erdős-Ko-Rado). Let F ⊂
(

[n]
k

)
be intersecting. Then

|F| ≤
(
n− 1

k − 1

)
.

Further, it is known that the only intersecting families even close to this
bound are isomorphic to a subfamily of F0. The proof of this ’Further’ bit is
tricky. We give now a beautiful probabilistic proof of the above theorem.
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Proof. Let As ∈
(

[n]
k

)
be the set of k consecutive integers from s to s + k − 1

(modulo n). It is easy to see that an intersecting family F can contain at most
k of these special sets As.

For any permutation σ of [n] we also have that

σ(As) := {σ(x) | x ∈ As}

is in F for at most k values of s, so for a random choice of s the probability that
σ(As) is in F is at most k/n.

But a random choice of σ and s is a random choice of a set in
(

[n]
k

)
so the

probability that σ(As) is in F is exactly |F|/
(
n
k

)
.

Thus k/n ≥ |F|/
(
n
k

)
which yields

|F| = k

n

(
n

k

)
=

(
n− 1

k − 1

)
.

A.3.1 Colourings

Recall that Kb is the clique on b vertices.

Problem A.3.2. Let R∗(b, r) be the minimum number of vertices in a graph
G such that for any 2-colouring of the edges there is a blue copy of Kb or a red
copy of Kr in G. Show that R∗(b, r) is the ramsey number R(b, r).

As in our proof for the lower bound for R(k, k) we can view the random
graph Gn,p as a clique Kn with randomly coloured edges. Using a random
colouring of [n] show the following.

Problem A.3.3. Let F be a (not-necessarily intersecting) subfamily of
(

[n]
k

)
,

of size |F| ≤ 2k−1. Show that there is a 2-colouring of [n] such that no set in F

is monochromatic (i.e. for no set is every element the same colour).
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1.5 Random Variables

Definition 1.5.1. A random variable or RV is a real function

X : D → R

on the sample space D of some experiment. The image C = X(D) is called the
space of X.

Example 1.5.2. In an experiment, we flip 100 fair coins. So the sample space
is D = {H,T}100. Let X be the random variable such that counts the number
of heads in an outcome of D . Then C = X(D) = {0, 1, 2, . . . , 100}.

The random variable is used to define a new probablity space on C =
{0, 1, 2, . . . , 100}, which is usually a bit easier to work with than the original
probability space on D = {H,T}100. We now define the probabililty set func-
tion of the new space.

Definition 1.5.3. The cumulative distribution function or cdf of a random
variable X is the function Fx : R→ [0, 1] defined by

FX(x) = P (X ≤ x).

The distribution of a probability space is a list of the probabilities of each
possible outcome. Its definition is slightly different depending on whether
the sample space is countable or continuous, but is closely related to the
probability set function.
Restricting to the probability space defined by a random variable, it will be
defined, in the upcoming sections, as a ‘pmf’ or ‘pdf’, which will be (essen-
tially) defined by the cdf.

Because of this, we casually refer to the cdf, or even an RV itself, as a distri-

bution.

Note

Problem 1.5.4. Show that the cdf of a random variable is a probability set
function on its space.

Problem 1.5.5. In the above example what is the probability P (2 ≤ X ≤ 30)?

Example 1.5.6. Continuing the above example, we have that FX(0) =
(

1
2

)100
=

FX(100), that FX(1) = FX(0) +
(

100
1

)(
1
2

)100
and that in general, for x ∈ C ,

FX(x) =

(
1

2

)100 x∑
i=0

(
100

i

)
.

Observe also that we have such values as FX(−3) = 0, , FX(499) = 1, and
FX(2.3) = FX(2).
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Problem 1.5.7. What is the cdf of a random variableX that counts the number
of heads in an experiment in which 100 p-coins are tossed?

Problem 1.5.8. In the two dice experiment with the sample space D = {(x, y) |
x, y ∈ [6]} of 36 equally likely outcomes, let X : C → R be the random variable
defined by X((x, y)) = x+ y. Find FX(4).

Example 1.5.9. Let X be the identity on the sample space C = [0, 1] in which
each outcome is equally likely. Then FX(x) = P (X ≤ x) = x, for x ∈ [0, 1].
(Also FX(x) = 0 if x < 0 and FX(x) = 1 if x > 1.)

A random variable X is discrete if its sample space C is finite or countable.
Examples 1.5.2 and 1.5.6 have discrete RVs while the RV in Example 1.5.9 is
not discrete. The treatment of discrete and non-discrete RVs is a little different,
and we will consider them separately in the next two sections. But before we
do this, we make a couple more observations about the cdf.

Theorem 1.5.10. Let F be the cdf of an RV. Then

i) a < b⇒ F (a) ≤ F (b),

ii) limx→−∞ F (x) = 0,

iii) limx→∞ F (x) = 1, and

iv) limx→a+ F (x) = F (a).

Problem 1.5.11. Prove the above theorem.

Problem 1.5.12. Show that limx→a− F (x) = F (a) need not be true.

Problem 1.5.13. For an event B ⊂ D , the indicator random variable IB :
D → [0, 1], is defined by

IB(x) =

{
1 if x ∈ B
0 otherwise.

Show that P (IB = 1) = P (B).

1.6 Discrete Random Variables

Recall that a random variable X is discrete if it has a countable sample space
C . For such a variable one can talk of the probability of a given outcome x ∈ C .

Definition 1.6.1. For a discrete random variable X, the probability mass func-
tion or pmf of X is the function pX : R→ [0, 1] defined by

pX(x) = P (X = x).

18



ve
r.

20
15

/0
5/

26

Example 1.6.2. Let X be the random variable that counts the number of flips
of a fair coin you make until one coin shows up heads. The sample space C of X
is the positive integers. Then we have, for example, pX(1) = 1/2, pX(2) = 1/4,
pX(n) = 1/2n, and pX(1/2) = 0.

Problem 1.6.3. Show that for the pmf p of a discrete RV X,
∑
x∈C p(x) = 1.

Example 1.6.4. Let X be the random variable from Problem 1.5.7 that counts
the number of heads showing up when we a p-coin 100 times. Then

pX(37) =

(
100

37

)
p37q63 = FX(37)− FX(36).

This exhibits a fundamental relationship between the cdf FX and the pmf
pX of a discrere RV:

FX(x) =
∑

i∈C ,i≤x

pX(i).

Problem 1.6.5. Prove this. Show that it need not hold for non-discrete RVs.
(Hint: What is pX when X is the RV from Example 1.5.9?)

The problem above exhibits the main difference between discrete and non-
discrete random variables. The pmf may be trivial for non-discrete RVs. In the
next section we will define an analogue of the pmf for certain nice non-discrete
RVs. Before we do this though, we talk about transformations of random vari-
ables.

Section 1.5: 2,3,8,9

Problems from the Text

1.6.1 Transformations of Discrete RV

Often we will define one random variable as a function of another.

Example 1.6.6. Let X be an RV with space C = {±1,±2, . . . ,±5}, and
pX(x) = 1/10 for all x ∈ C

Let Y = X2. Then Y is an RV with space D = {1, 4, 9, 16, 25}. For each
y ∈ D we have that

pY (y) = P (Y = y)

= P (X2 = y)

= P (X ∈ {±√y})
= pX(−√y) + pX(

√
y)

So pY (y) = 1/5 for all y ∈ D .
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It is easy to see that in general, if Y = g(X) then

pY (y) =
∑

x∈g−1(y)

pX(x).

If g is one-to-one, this simplifies to

pY (y) = pX(g−1(x)).

Problem 1.6.7. Show that if Y = g(X) for monotone strictly increasing g then
Fy(g(x)) = Fx(x). What can we say if g is decreasing?

Section 1.6: 1,2,3,5,7,10

Problems from the Text

1.7 Continuous Random Variables

Recall that if an RVX is not discrete, its pmf pX(x) = P (X = x) = limε→0(FX(x)−
FX(x− ε)) may be identically 0. Indeed this is the situation we want.

Definition 1.7.1. A random variable X is continuous if its cdf FX is a contin-
uous function on R.

For such functions pX is identically 0.

Definition 1.7.2. A random variable X is absolutely continuous if

FX(x) =

ˆ x

−∞
fX(t) dt

for some function fX . Then function fX is called the probability density function
or pdf of X.

We will never consider RVs that are continuous but not absolutely continuous
(though the exist); so any time we say an RV X is continuous, we will
assume that it has a pdf fX . It then follows by the fundamental theorem of
calculus that

fX(x) =
d

dx
FX(x).

The pdf of a continuous RV is the analogue of the pmf of a discrete RV.

Problem 1.7.3. Show that for a continuous RV X,

P (a < X < b) =

ˆ b

a

fX(t) dt.
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Example 1.7.4. Recall the RV X from Example 1.5.9 that had cdf FX(x) = x
for all x ∈ [0, 1]. Its pdf is the derivative

fx(x) = F ′X(x) =
d

dx
(x) = 1.

We say that an RV X (or its sample space C ) has a uniform distribution
if the pdf ( or pmf ) is constant on its support. The RV X from the above
example is said to have the standard uniform distribution. This is denoted
X ∼ Unif([0, 1]). The RV X from Example 1.6.6 is a uniformly distributed
discrete random variable.

Given a sample space C , we sometimes say that an event is ‘chosen at random’

to mean we an event is chosen according to a uniform distribution.

Note

Problem 1.7.5. Find the pdf of the uniformly distributed random variable
X ∼ Unif([−1, 1]) on the space C = [−1, 1].

Problem 1.7.6. Show that for a uniformly distributed space C ⊂ Rn the
probability of an event C is

P (C) =

‚
C

1 dx‚
C 1 dx

.

That is, show that the probability of an event is proportional to its volume.

Example 1.7.7. Let a point (x, y) be chosen randomly from C = {(x, y) |
x2 + y2 < 1} and let X be its distance from (0, 0). By definition C is uniformly
distributed, but C is not the space of X. (The space of X is [0, 1].) We observe
that X is not uniformly distributed.

Indeed, its cdf is FX(t) = P (X ≤ t) which is the area of the event {(x, y) |
x2 + y2 ≤ t} over the area of C (which is π.) So

FX(x) = 1/π

ˆ x

0

2πt dt =

ˆ x

0

2t dt = x2

for x ∈ [0, 1]. And so fX(x) = d
dxx

2 = 2x, which is not constant.

1.7.1 Transformations of Continuous RVs

Now let Y = X2 be a transformation of X from the above example. So Y =
g(X) where the function g(x) = x2 is monotone strictly increasing on the space
(0, 1]. It is tempting to follow the discrete case and say that the pdf of f is

fY (y) = fX(g−1(y)) = 2
√
y.
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But this is not true! Indeed, the cdf of Y is

FY (y) = P (Y ≤ y) = P (X2 ≤ y) = P (X ≤ √y) = FX(
√
y),

but this is FY (y) =
√
y2 = y and so the pdf is fY (y) = d

dyy = 1.

Of course! A transformation is just a change of variables from calculus. In
general, differentiating the above equation FY (y) = FX(g−1(y)) with respect to
y, we get, by the chain rule,

fY (y) = fX(g−1(y)) · d
dy
g−1(y) = fX(g−1(y)) · dx

dy
.

Indeed, this is what we found:

fY (y) = fX(g−1(y)) · dx
dy

= 2
√
y · d

dy

√
y = 2

√
y · 1

2
√
y

= 1.

We have proved the following theorem (in the case that g is monotone in-
creasing).

Theorem 1.7.8. Let X be a continuous RV with pdf fX(x) and let Y = g(X)
where g is one-to-one and differentiable on the support of X. Then the pdf of
Y is

fY (y) = fX(g−1(y)) · |J |
where J = d

dy g
−1(y), for y in the support {g(x) | x ∈ SuppX} of Y .

Problem 1.7.9. Where in the proof are we using that fact that g is monontone
increasing?

The value J = d
dy g
−1(y) is called the Jacobian of the transformation g. In

other books it may be called the Jacobian of g−1.

Example 1.7.10. Where X ∼ Unif((0, 1)) let Y = −2 logX. So Y has support
(0,∞). The transformation h : X → Y : x 7→ −2 log x is one-to-one with inverse
h−1(y) = e−y/2, so it has Jacobian

J =
d

dy
e−y/2 = −1

2
e−y/2.

The pdf of Y is thus

fY (y) = fX(e−y/2) · |J | = 1 · 1

2
e−y/2 =

1

2
e−y/2

on the support of Y .

Section 1.7: 1,2,5,6,8,9,10

Problems from the Text
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1.8 Expectation of a Random Variable

Definition 1.8.1. For a random variable X, the expected value or expectation
of X is

E(X) =
∑
x∈C

xpX(x)

or

E(X) =

ˆ ∞
−∞

xfX(x) dx

depending on whether X is discrete or continuous.

Technically, being an integral or possibly infinite sum, the expectation need

not always exist for an RV. And indeed, we should insist that the sum/integral

is absolutely convergent so that the expectation is independent of an ordering

of the sample space. But this is not an issue for all RVs that we consider.

In theorems dealing with expectation, we will implicitly assume sufficiently

strong convergence.

Note

Example 1.8.2. The expected value when you roll a die is (1+2+ · · ·+6)/6 =
3.5.

Example 1.8.3. Let X be the distance from (0, 0) of a randomly chosen point
in the unit circle S = {(x, y) | x2 + y2 ≤ 1}. What is E(X)?

Using that the pdf of X is f(x) = 2x (from Example 1.7.7), we get that

E(X) =

ˆ ∞
−∞

x · 2x dx =

ˆ 1

0

x · 2x dx

= 2

ˆ 1

0

x2 dx = 2
(
1/3x3

)1
0

= 2/3

Now, ignoring issues of convergence (dealt with in Theorem 1.8.1 of [1]) we
see that for any transformation Y = g(X) of an RV X we have

E(Y ) =
∑
Cy

ypY (y) =
∑
Cy

y
∑

g(x)=y

pX(x)

=
∑
Cy

∑
g(x)=y

ypX(x) =
∑
Cy

∑
g(x)=y

g(x)pX(x)

=
∑
Cx

g(x)pX(x).

The following tool is immediate from the above using the linearity of sums
and integrals.
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Theorem 1.8.4 (Linearity of Expectation). If Y = k1g1(X) + k2g2(X) then
E(Y ) = k1E(g1(X)) + k2E(g2(X)).

Problem 1.8.5. Prove Theorem 1.8.4.

Problem 1.8.6. Where Y = X2 for X from Example 1.8.3, what is E(Y )?
(Make a guess before you compute it. What should it be?)

Problem 1.8.7. Let IC be the indicator variable (see Problem 1.5.13) for an
event C ∈ C . Show that E(IC) = P (A).

Problem 1.8.8. Let X count the number of heads that show up when n inde-
pendent p-coins are flipped. Find E(X).

Problem 1.8.9. Let v be a randomly chosen vertex in Gn,p. What is the
expected degree E(deg(v)) of v.

Section 1.8: 3,4,6,7,8,9,11

Problems from the Text

1.9 Mean Variance and Moments

Given a random variable X, we will be interested in the expected value of
various functions of X. Certain ones get special names and notation. The
expected value of X is also called the mean µ = E(X) of X. Then variance of
X is

σ2 = Var(X) = E
(
(X − µ)2

)
.

Expanding the square in expression on the right, and using the linearity of
expectation, we get that

σ2 = E
(
X2 − 2µX + µ2

)
= E(X2)− 2µE(X) + µ2

= E(x2)− µ2

Then positive square root σ of the variance is called the standard deviation
of X.

Example 1.9.1. Let X have pdf f(x) = 1
2 (x + 1) for x ∈ [−1, 1]. Find µ and

σ2.

We get

µ = E(X) =

ˆ 1

−1

xf(X) dx =
1

2

ˆ 1

−1

x2 + x dx

=
1

2

(
1

3
(1 + 1)

)
=

1

3
,
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and

σ2 = E(X2)− µ2 =
1

2

ˆ 1

−1

x3 + x2 dx− 1

9

=
1

2

(
1

4
(1 + 1) +

1

3
(1 + 1)

)
− 1

9

= 17/36.

Problem 1.9.2. In terms of Var(X) and Var(Y ), what is Var(X − Y )?

1.9.1 The moment generating function

The mean µX = E(X) has yet another name. It is also called the first moment
of X. And the value E(X2), used in the compuation of the variance, is called
the second moment of X. In general E(Xn) is the nth moment of X. The 0th

moment is E(1) = 1.

Letting the moments be the coefficients of an exponential generating func-
tion:

MX(t) = E(1) + tE(X) + t2
E(X2)

2!
+ t3

E(X3)

3!
+ . . . ,

we get by the linearity of expectation that

MX(t) = E(1 + (tX) +
(tX)2

2!
+ . . . ) = E(etx).

So we have that the nth moment E(Xn) of X is also denoted M
[n]
X (t).

From the cdf of an RV, one can compute the moments, and so find the
moment generating function. On the other hand, we know from an analysis
class, that the power series of a function expanded on an open interval around
a point, is uniqely defined, so the moment generating function uniquely defines
the moments of a distribution. The following theorem takes this one step further
and asserts that from the moments, we can recover the cdf. The proof of this is
beyond our scope, (and beyond the scope of the text).

Theorem 1.9.3. If MX(t) = MY (t) on some open interval around t, then
FX(z) = FY (z) for all z.

This function MX(t) = E(etx) is called the moment generating function or
mgf of X. As the taylor expansion of a function about a point does not always
converge, not all RVs necessarily have mgfs, and indeed the text gives examples
of RVs for which the mgf does not exist. But the mgf does exist for many RVs
that we will consider, and it will become a useful tool.

Section 1.9: 1,2,3,5,6,18,23

Problems from the Text
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1.10 Important Inequalities and Bounds

We finish the chapter with some basic inequalities.

1.10.1 Markov’s Inequality

Theorem 1.10.1 (Markov’s Inequality). For any RV X, any non-negative
function u of X and any constant c, the following are both true.

� P (X ≥ c) ≤ E(X)/c

� P (u(X) ≥ c) ≤ E(u(X))/c

Proof. The first statement is simply a special case of the second, so we prove
just the second. We prove it in the case that X is continuous. The proof in the
discrete case is essentially the same.

Let A = {x | u(x) ≥ c}. (Recall that Ac is its complement.) Then

E(u(X)) =

ˆ ∞
−∞

u(x)fX(x) dx

=

ˆ
A

u(x)fX(x) dx+

ˆ
Ac
u(x)fX(x) dx

≥
ˆ
A

u(x)fX(x) dx

≥ c

ˆ
A

fX(x) dx = cP (x ∈ A) = cP (u(x) ≥ c).

The inequality follows.

Markov’s inequality is crude. Indeed if X ∼ Unif([0, 4]) then E(X) = 2 and
taking c = 1 the inequality says P (X ≥ 1) ≤ 2. We could certainly give a better
bound. However, the inequality is incredibly useful due to its universality.

1.10.2 Chebyshev’s Inequality

Corollary 1.10.2 (Chebyshev’s Inequality). Let X be an RV, then for every
ε, k > 0, the following, clearly equivalent statements, all hold.

i) P (|X − µ| ≥ kσ) ≤ 1/k2

ii) P (|X − µ| < kσ) > 1− 1/k2

iii) P (|X − µ| < ε) > 1− σ2/ε2
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Proof. Applying Markov wih u(x) = (X − µ)2 and c = k2σ2 gives

P
(
(X − µ)2 ≥ k2σ2

)
≤
E
(
(X − µ)2

)
k2σ2

=
1

k2

In Problem 1.9.3 of the text, you were asked to find P (µ−2σ ≤ X ≤ µ+2σ)
for an RV X with pdf f(x) = 6x(1 − x). Compare this with the quick bound
we can now get without even computing µ and σ:

P (µ− 2σ ≤ X ≤ µ+ 2σ) > 1− 1/4 = 3/4

1.10.3 Jensen’s Inequality

You have probably seen the next inequality several times, and proved it in a
linear algebra class. It won’t hurt to see it again. We state it without proof.

Definition 1.10.3. A function f is convex on an interval I = [a, b] if for all
x, y ∈ I and all n > 1,

f(x/n+ y
n− 1

n
) < f(x)/n+ f(y)

n− 1

n
.

The following picture for the case n = 2 show that this definition of convexity
agrees with the definition for a continuous function that it is convex if the second
derivative is positive.

Theorem 1.10.4 (Jensen’s Inequality). If f is convex, then

f

(
x1 + x2 + . . . xn

n

)
≤ f(x1) + f(x2) + · · ·+ f(xn)

n
.

For any RV X, this means that

f(E(X)) ≤ E(f(X)).

Example 1.10.5. The function x2 is convex so E(X)2 < E(X2). Thus Var(X) =
E(X2)− E(X)2 is non-negative.
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Problem 1.10.6. Sometimes the mean of a set of numbers {x1, . . . , xn} is
called the arithmetic mean AM = 1

n

∑
xi, distinguishing it from the geometric

mean GM = (
∏
xi)

1/n and the harmonic mean HM = ( 1
n

∑
1
xi

)−1.

Using that − log x is convex, use Jensen’s Inequality to show that for any
set {x1, . . . , xn} of positive numbers, HM ≤ GM ≤ AM .

1.10.4 ‘Compoud interest’ and Stirling’s Formula

Recall from your financial math class that investing �1000 at .05 interest com-
pounded continuously yield a real yearly return of

lim
n→∞

1000(1 + .05/n)n = 1000e.05.

This same inequality 1 + x ≤ ex, is often used with probabilities:

(1− p)n ≤ e−np.

I call this the compound interest bound. We can also get a lower bound

e−2np < e−np(1−p/2)/(1−p) < (1− p)n

which we use for probabilities p < 1/2.

In applications we will often have to bound n!. Often it is enough to write

(n/2)(n/2) ≤ n! ≤ nn,

but we get the following from stirling’s formula

(n/e)n ≤ n! ≤ ne(n/e)n.

To bound
(
n
k

)
we can usually use(

n

k

)k
≤
(
n

k

)
≤
(
en

k

)k
< nk.

Section 1.10: 2,3,4,6

Problems from the Text
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2 Multivariate Distributions

In Example 1.5.2 we considered the experiment of tossing 100 p-coins and let
Y be the random variable counting the number of heads. The experiment can
be viewed as a set of 100 random variables X1, . . . , Xn each having the pmf
of a p-coin. In this context we can view Y as a function Y =

∑100
i=1Xi of the

multivariate distribution X = (X1, . . . , X100). Lets go into more detail. .

2.1 Distributions of Two Random Variables

Definition 2.1.1. A random vector X = (X1, . . . , Xn) is a set of RVs on a
sample space D . The space of X is

C = {(X1(c), X2(c), . . . , Xn(c)) | c ∈ C }.

Example 2.1.2. Where D are people in a sample population, X = (Height,Weight,Age)
is a random vector.

Example 2.1.3. The random graph Gn,p can be viewed as a random vector
consisting of

(
n
2

)
RVs Xe each with the distribution of a p-coin, one for each

possible edge e on the vertices [n].

We extend many of our definitions for RVs to random vectors. For most
definitions the extension from two variables to arbitrarily many is trivial. For
those that it isn’t, we will revisit them later for more than two variables.

Definition 2.1.4. The (joint) cdf of X = (X1, X2) is

FX(x) = FX1,X2
(x1, x2) = P ((X1 ≤ x1) and (X2 ≤ x2)) .

The (joint) pmf for discrete X is

pX(x) = pX1,X2(x1, x2) = P ((X1 = x1) and (X2 = x2)) .

The (joint) pdf for continuous X is a function fX such that

FX(x) =

ˆ x1

−∞

ˆ x2

−∞
fX(t1, t2) dt1 dt2,

so almost everywhere we have

fX(x) =
∂2FX(x1, x2)

∂x1∂x2
.

Example 2.1.5. Let fx(x1, x2) = 6x2
1x2 for xi ∈ (0, 1) be the joint pdf of

X = (X1, X2). Then P (1/4 < X1 ≤ 3/4, 0 < x2 < 2) is

ˆ 3
4

1
4

ˆ 1

0

6x2
1x2 dx2 dx1 =

ˆ 3
4

1
4

3x2
1 dx1 = [x3

1]
3
4
1
4

= 13/32
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From the joint pmf of a random vector, we can isolate the (marginal) pmf
of any one component RV as follows,

pX1
(x1) =

∑
x2

pX(x1, x2),

where
∑
x2

is over all x2 such that (x1, x2) ∈ C .

The marginal pdf of component of a continous random vector is defined
analogously.

Problem 2.1.6. Find the marginal pdf ofX1 for the joint distribution fx(x1, x2) =
6x2

1x2 from the above example.

The following generalisation of Theorem 1.8.4 to random vectors is a key tool
in saying anything of substance in statistical inference or with the probabilistic
method.

Theorem 2.1.7 (Additivity of Expectation). Let X = (X1, . . . , Xn) be a ran-
dom vector and k1, . . . , kn be real numbers. Then

E(
∑

kiXi) =
∑

kiE(Xi).

Proof. We do the continuous case for a vector of two RVs:

E(k1X1 + k2X2) =

ˆ
R

ˆ
R

(k1x1 + k2x2)fX(x1, x2) dx2 dx1

= k1

ˆ ˆ
x1fX(x1, x2) dx2 dx1 + k2

ˆ ˆ
x2fX(x1, x2) dx2 dx1

= k1E(X1) + k2E(X2)

We can talk of the expected value of a random vector. It is simply the vector

E(X) = (E(X1), . . . , E(Xn))

of expected values of its components. To find the expected value of a random
vector on must find the expected value of the components. To find E(X1), or
more generally E(g(X1)), we can get the marginal distribution of X1, and then
find the expected value as in the previous chapter. Or we can find it directly:

Example 2.1.8. Where fX(x1, x2) = 6x2
1x2, the expected value of X2

1 is

E(X2
1 ) =

ˆ 1

0

ˆ 1

0

x2
1 · 6x2

1x2 dx1 dx2

=
1

2

ˆ 1

0

6x4
1 dx1 =

6

10
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Problem 2.1.9. Find E(X2
1 ) in the above example by using the marginal dis-

tribution of X1 which you found in Problem 2.1.6.

Definition 2.1.10. The mgf of X = (X1, . . . , Xn) is

MX(t) = E(et·x) = E(et1x1+t2x2+···+tnxn)

Clearly MX(t, 0) = MX1(t).

Section 2.1: 1,2,3,6,7,9,12

Problems from the Text

2.2 Transformations of Bivariate RV

Assume that X is a random vector and Y is some function Y = g(X) of X.
Given the joint pdf of X we can find the pdf of Y by going through the cdf:
finding

FY (y) =

‹
S={x|g(x)≤y}

fx1,x2(x1, x2) dx

and then differentiatin to get fY(y).

In this section we look at the method of transformations for doing the same
thing.

2.2.1 Discrete Case

In the one variable case when we had Y = g(X) for one-to-one ( and increasing)
g we observed that clearly py(y) = px(g−1(y)). Now, when Y = g(X1, X2) we
are not one-to-one. We overcome this by extending g to a transformation of
random vectors.

Example 2.2.1. Let X = (X1, X2) have pmf

px(x1, x2) =
µx1

1 µx2
2 e−µ1e−µ2

x1!x2!
xi ∈ N,

and Y1 = X1+X2. This is not one-to-one, but we can make it so by introduction
a dummy variable Y2 and extending it to a one-to-one transformation u of
vectors: [

Y1

Y2

]
=

[
u1(X1, X2)
u2(X1, X2)

]
=

[
X1 +X2

X1

]
.

This is indeed one-to-one as it has the inverse transformation[
X1

X2

]
=

[
w1(Y1, Y2)
w2(Y1, Y2)

]
=

[
Y2

Y1 − Y2

]
.
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So as in the one variable case, we clearly have

py(y1, y2) = px(w1(y1, y2), w2(y1, y2)) =
µy21 µ

y1−y2
2 e−µ1e−µ2

y2!(y1 − y2)!
.

Now the sample space of X is N2, and u maps this to the space

{(Y1, Y2) | Y2 ∈ N, Y1 − Y2 ∈ N}

which means Y2 ∈ N, Y1 ∈ N and Y2 ≤ Y1.

Then py1(y1) is the marginal pmf

py1(y1) =

y1∑
y2=0

µy21 µ
y1−y2
2 e−µ1e−µ2

y2!(y1 − y2)!

=
e−(µ1+µ2)

y1!

y1∑
y2=0

y1!

y2!(y1 − y2)!
µy1−y21 µy22

=
e−(µ1+µ2)

y1!

y1∑
y2=0

(
y1

y2

)
µy1−y21 µy22

=
(µ1 + µ2)y1e−(µ1+µ2)

y1!

where the last line uses the binomial expansion of (µ1 + µ2)y1 .

Problem 2.2.2. We might write the transformation u in the above example as[
Y1

Y2

]
=

[
1 1
1 0

] [
X1

X2

]
,

calling the square matrix in the middle U . Write the inverse transformation as[
X1

X2

]
= W

[
Y1

Y2

]
for some square matrix W . What do you notice about U and W?

2.2.2 A Continuous Example

Let X = (X1, X2) have the uniform distribution on the unit square D =
{(x1, x2) | 0 ≤ xi ≤ 1}; so the pdf fX is 1 on D and 0 elsewhere.

To find the pdf of Y1 = X1 +X2, we add the dummy variable Y2 and extend
Y1 to the transformation[

Y1

Y2

]
=

[
u1(X1, X2)
u2(X1, X2)

]
=

[
X1 +X2

X1 −X2

]
,
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with inverse transformation[
X1

X2

]
=

[
w1(Y1, Y2)
w2(Y1, Y2)

]
=

[
Y1+Y2

2
Y1−Y2

2

]
.

The transformation u takes the
sample space D of X to the sample
space u(D) shown on the right.

Problem 2.2.3. Describe u(D) math-
ematically and show that it is as
drawn.

Now to get the pmf of Y we integrate fX over D and then differentiate with
respect to Y. In short, want the function fY such that

‹
u(D)

fY(y1, y2) dy1 dy2 =

‹
D

fX(x1, x2) dx1 dx2.

Recall from calculus that where J is the Jacobian

J =
∂w1

∂y1

∂w2

∂y2
− ∂w1

∂y2

∂w2

∂y1
=

(
1

2

)(
−1

2

)
− 1

2

1

2
= −1

2
,

we have

fY(y) = fX(w(y)) · |J | = 1 ·
∣∣∣∣−1

2

∣∣∣∣ =
1

2

on u(D) and 0 elsewhere.

To get the marginal pdf fY1
we then integrate with respect to Y2. When

y1 ∈ [0, 1], fY(y1, y2) is 1 for y2 ∈ [−y1, y1], so

fY1(y1) =

ˆ y1

−y1

1

2
dy2 = y1

and (as u(D) is symmetric about y1 = 1,) when y1 ∈ [1, 2], fY(y1, y2) = fY(2−
y1, y2) so fY1

(y1) = 2− y1.

2.2.3 Recalling Jacobian from Calculus

The formula fY(y) = fX(w(y))·|J | can be proved by considering approximation
of the integral

‚
u(D)

fY(y) dy. We would use
∑
L fY(`)∆2: the sum of fY at

points ` of a ∆ lattice on u(D), each multiplied by the area of the ∆ square D`

in the positive directions from `.

So that
‚

u(D)
fY(y) dy =

‚
D
fX(x) dx, fY(`)∆2 should then be equal to

fX(w(`))A where A is the area of the w(D`).
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But w(D`) is approximatley a
parallelogram between the vectors
∆(∂w1

∂y1
, ∂w2

∂y1
) and ∆(∂w1

∂y2
, ∂w2

∂y2
), so has

area approximately

A = ∆2

∣∣∣∣∂w1

∂y1
∂w2

∂y1
∂w1

∂y2
∂w2

∂y2

∣∣∣∣.
Taking limits in this argument gives the Jacobian formula.

Section 2.2: 1,3,5,6

Problems from the Text

2.3 Conditional Distributions

Definition 2.3.1. Let (X,Y ) be a random vector. The conditional pmf (pdf)
of X, conditioned on Y , is

pX|Y (x|y) =
pX,Y (x, y)

pY (y)

(or the same with f in place of p).

In the discrete case we have that pX|Y (x|y) is the probability that X = x
given that Y = y. The continuous case is the density analogue.

In the case of the random vector (X1, X2) we may use shortcut notation such

as p1|2 for pX1|X2
.

Note

Example 2.3.2. Let (X,Y ) have the joint distribution pX,Y shown.

.
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Then the marginal pmf pX takes x to the sum of the xth column, and and
the marginal pmf pY takes y to the sum of the yth row. So px(3) = .15 and
pY (b) = .35. The conditional pmf pX|Y (x|y) restricts to the yth row, scales it
by 1/pY (y) (so that it sums to 1) and then returns the x value.

Observe that for fixed y the function

pX|y : x 7→ pX|Y (x|y)

is itself the pmf of a random variable, the conditional random variable (or con-
ditional distribution) which we denote X|y. Being an RV, we can compute its
mean and variance.

The notation pX|Y vs pX|y can get confusing. The argument of pX|Y is x|y,

with two values, the argument of pX|y is simply x. Use this heuristic aid: if

the letter in the index is uppercase, the argument has a corresponding lower

case value.

Note

Example 2.3.3. Let (X,Y ) have the pdf fX,Y (x, y) = 6y on its support 0 ≤
y ≤ x ≤ 1. We find the mean µ of X|y.

First, by definition µ = E(X|y) =
´ 1

y
x · fX|y(x) dx, so we need to find

fX|y(x) = fX|Y (x|y) =
fX,Y (x,y)
fY (y) . Now the marginal pmf in y is

Note

fY (y) =

ˆ 1

y

fX,Y (x, y) dx =

ˆ 1

y

6y dx = 6y(1− y),

so

fX|y(x) =
fX,Y (x, y)

fY (y)
=

6y

6y − 6y2
=

1

1− y
,

and so

E(X|y) =
1

1− y

ˆ 1

y

xdx =
1

1− y
1

2
(1− y2) =

1 + y

2
.

Problem 2.3.4. Show that the variance of X|y above is σ2 = y2−2y+1
12 .

We showed for any y in [0, 1] that E(X|y) = 1+y
2 . This is a transformation

g(Y ) of Y , where g(y) = 1+y
2 , so itself gives us random variable. We denote this

random variable by E(X|Y ). Its sample space is [1/2, 1].

Example 2.3.5. By the method of transformations we have that the pdf of
E(X|Y ) is

fE(X|Y )(z) = fY (2z − 1)

∣∣∣∣ d(2z− 1)

dz

∣∣∣∣ =
1 + (2z − 1)

2
· 2 = 2z.

We used that the inverse transformation is y = g−1(z) = 2z − 1.
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The following simple observation will be a useful tool in finding ‘minimum
variance estimators.’

Theorem 2.3.6. For a random vector (X,Y ),

i) E(E(X|Y )) = E(X).

ii) Var (E(X|Y )) < Var(X).

Proof. For the first statement we have:

E(E(X|Y )) =

ˆ ∞
−∞

E(X|y)fY (y) dy

=

ˆ ∞
−∞

ˆ ∞
−∞

xfX|y(x|y)fy(y) dx dy

=

ˆ ˆ
x · fX,Y (x, y) dx dy = E(X).

For the second, we show

E
(
E(X|Y )2

)
≤ E(X2);

taking µ2 from both sides of this equation then gives the result we are looking
for.

E(E(X|Y )2) =

ˆ
R
E(X|y)2 · fY (y) dy

≤
ˆ
R
E(X2|y) · fY (y) dy (applying E(X)2 ≤ E(X2) to the RV X|y )

=

ˆ
R

ˆ
R
x2fX|Y (x|y) · fY (y) dx dy

=

ˆ
R

ˆ
R
x2fX,Y (x, y) dx dy

= E(X2)

Section 2.3: 1,2,3,5,7

Problems from the Text
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2.5 Independent Random Variables

Definition 2.5.1. Random variablesX and Y , with joint pdf fXY and marginal
pdfs fX and fY , are independent if

fXY (x, y) = fX(x) · fY (y)

(holds with probability 1). They are dependent otherwise.

There are several equivalent definitions of independence.

Theorem 2.5.2. The following are equivalent for RVs X and Y .

i) X and Y are independent

ii) fXY (x, y) = g(x)h(y) (almost everywhere) for some non-negative func-
tions g and h

iii) The cdfs satisty FXY (x, y) = FX(x)FY (y) for all x and y.

iv) For all intervals SX and SY ⊂ R,

P (X ∈ SX , Y ∈ SY ) = P (X ∈ SX)P (Y ∈ SY ).

Proof. That i) impies ii) is immediate from the definition. We first show ii)
implies i). Assuming ii), the marginal pdfs are

fX(x) =

ˆ
R
g(x)h(y) dy = g(x)

ˆ
R
h(y) dy = c1g(x)

for some constant c1 and fY (y) = c2h(y) for some constant c2. As

1 =

ˆ
R

ˆ
R
fXY (x, y) dy dx =

ˆ
R

ˆ
R
g(x)h(y) dy dx

=

ˆ
R
g(x) dx

ˆ
R
h(y) dy = c1c2

we get that c1c2 = 1. So

fXY (x, y) = g(x)h(y) =
fX(x)fY (y)

c1c2
= fX(x)fY (y).

For i) implies iii):

FXY (x, y) =

ˆ x

−∞

ˆ y

−∞
fXY (s, t) dtds =

ˆ ˆ
fX(s)fY (t) dtds

=

ˆ
fX(s) ds

ˆ
fY (t) dt = FX(x)FY (y)
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For iii) implies i):

fXY (x, y) =
∂2FXY (x, y)

∂x∂y
=

∂2

∂x∂y
FX(x)FY (y)

= fX(x)
∂

∂y
FY (y) = fX(x)fY (y)

The proof of the equivalence of iii) and iv) is just as straight forward, so we
skip it.

Theorem 2.5.3. If X and Y are independent, then E(XY ) = E(X)E(Y ).

Proof.

E(XY ) =

ˆ ˆ
xyfXY (x, y) dy dx =

ˆ
xyfX(x)fY (y) dy dx

=

ˆ
xfX(x) dx

ˆ
yfY (y) dy = E(X)E(Y )

Problem 2.5.4. Show that if X and Y are independent, then E(X|y) = E(X).

Section 2.5: 1,3,4,5,8,9,12

Problems from the Text

2.4 The Correlation Coefficients

The following is done for continuous variables, which are assumed to be nice,
(ie., all necessary expectations are assumed to exist). It holds though for discrete
variables as well.

For random variables X and Y with means µX and µY respectively, the
covariance is Cov(X,Y ) = E((X − µX)(Y − µY )).

Problem 2.4.1. Show that Cov(X,Y ) = E(XY )− µXµY .

Observe that if X = Y then Cov(X,Y ) = E(X2)−E(X)2 = Var(X); so the
covariance can be seen as a generalisation of the variance.

Problem 2.4.2. Show that if X and Y are independent, then Cov(X,Y ) = 0.
Show if E(X|y) is an increasing (decreasing) function of y then Cov(X,Y ) > 0
(Cov(X,Y ) < 0).
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The magnitude of Cov(X,Y ) is hard to interpret, but the normalised version,
the correlation coefficient

ρ =
Cov(X,Y )

σXσY
has the property that −1 ≤ ρ ≤ 1. If X = Y then ρ = 1 and if X = −Y then
ρ = −1. So |ρ| is a measure of how closely X and Y are related.

Section 2.4: 1,3,4,10

Problems from the Text

2.6 Extension to more Random Variables

Let X = (X1, . . . Xn) be an n dimensional random vector. Its joint cdf is

FX(x) = P (X1 ≤ x1, X2 ≤ x2, . . . Xn ≤ xn)

and its joint pdf is a function fX such that

FX(y) =

ˆ y1

−∞
· · ·
ˆ yn

−∞
fX(x) dxn . . . dx1.

The conditional pdfs are

fX|Xi(x|xi) =
fX(x)

fXi(xi)
.

The variables X1, . . . Xn are mutully independent if

fX(x) =

n∏
i=1

fXi(xi)

(with probability 1.)

In this case
E(
∏

ui(Xi)) =
∏

E(ui(Xi))

for any transformations ui of Xi. In particular:

Theorem 2.6.1. Let T =
∑n
i=1 kiXi where X1, . . . , Xn are mutually indepen-

dent RVs having respective mgfs M1(t), . . . ,Mn(t). The RV T has mgf

MT (t) =
∏

Mi(kit).

Proof.

MT (t) = E(etT ) = E(et
∑
kiXi) = E(

∏
etkiXi)

=
∏

E(etkiXi) =
∏

Mi(kit)
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A vector of RVs is independent identically distributed or iid if the components
are mutually independent and all have the same pdfs. An n-dimensional iid
random vector of variables all having the same pdf as a RV X is an random
sample of distribution X ; it has n tests, or n samples, or simply has size n.
Often we implicitly assume n is the size of the sample.

Corollary 2.6.2. If X is a random sample of distribution X then M∑
Xi(t) =

(MX1
(t))n.

Section 2.6: 1,2

Problems from the Text

2.7 Transformations for more Variables

This is mostly the same as Section 2.2 so we skip it, except for noting what the
jacobian looks like for more variables.

For n-dimensional random vectors X and Y a transformation u : X→ Y is
described by Yi = ui(X1, . . . Xn) for i = 1, . . . , n and its inverse is described by
Xi = wi(Y1, . . . , Yn).

The jacobian is the determinant∣∣∣∣∣∣∣
∂w1

∂y1
. . . ∂w1

∂yn
...

...
∂wn
∂y1

. . . ∂wn
∂yn

∣∣∣∣∣∣∣
2.8 Linear Combinations of Random Variables

Let X and Y be random vectors. By the linearity of expectation

E(
∑

aiXi) =
∑

aiE(Xi).

Further

Cov(
∑

aiXi,
∑

biYi) = E
(

(
∑

aiXi −
∑

aiE(Xi))(
∑

biYi −
∑

biE(Yi))
)

= E(
∑∑

aibjXiYj −
∑∑

aibjE(Xi)Yj + . . .

=
∑∑

aibjE[XiYj −XiE(Yj)− E(Xi)Yj + E(Xi)E(Yj)]

=
∑∑

aibjE[(Xi − E(Xi))(Yj − E(Yj))]

=
∑∑

aibj Cov(Xi, Yj)
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In the case that X = Y this gives that

Var(
∑

aiXi) =
∑∑

aiaj Cov(Xi, Xj) =
∑

a2
i Var(Xi)

where the last inequality uses that the non-diagonal terms are 0 by the inde-
pendence of the variables.

If X is a random sample of a distribution X having mean µ and variance
σ2, then the sample mean is

X =

∑
Xi

n
.

It has expected value

E(X) = E

(
1

n

∑
Xi

)
=
nE(X)

n
= E(X)

and variance

Var(X) =
1

n2

∑
Var(Xi) =

σ2

n
.

The sample variance is

S2 =

∑
(Xi −X)2

n− 1
=

∑
X2
i − nX

2

n− 1

We get the second equality above as follows.

∑
(Xi −X)2 =

∑
(X2

i − 2XiX +X
2
)

=
∑

X2
i − 2X

∑
Xi + nX

2

=
∑

X2
i − 2nX

2
+ nX

2
=
∑

X2
i − nX

2

The sample variance is a random variable. It has expected value

E(S2) =
1

n− 1

(∑
E(X2

i )− nE(X
2
)
)

=
1

n− 1

(
n(σ2 + µ2)− n(µ2 +

σ2

n
)

)
= σ2

Section 2.8: 2,3,10

Problems from the Text
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B Cycles in Gn,p

We give an analysis of the number of cycles in Gn,p, exhibiting how we use the
concepts (to be) developed in Chapters 1, 2 and 3.

B.1 The probability that Gn,p is a cycle

In Chapter 1, we viewed Gn,p as a sample space containing every possible graph
on n vertices. Where N =

(
n
2

)
, any graph H with m edges occured with

probability pmqN−m.

To calculate the probability that Gn,p is isomorphic to some graph H, we
must count the number of isomorphic copies of H in Gn,p, and then use the
additivity of probability on these (disjoint) basic event.

Example B.1.1. The event Cn that G = Gn,p is an n-cycle contains n!/2n
different outcomes, as this is the number of different n-cycles on n labelled

vertices, and each occurs with probability pn(1 − p)(
n
2)−n. So the probability

that G is an n-cycle is

P (Cn) =
n!

2n
pn(1− p)(

n
2)−n =

n!

2n
(pn − p(

n
2)).

Problem B.1.2. What is the probability that G = Gn,p is a k-cycle? That it
is a cycle of any girth?

B.2 Expected number of cycles in Gn,p

Finding the probability that Gn,p is a cycle is easy, it is a much harder task to
find the probability that Gn,p contains a cycle.

For a cycle c on the vertices [n], let Yc be the event that Gn,p contains c.
The following is not so hard.

Problem B.2.1. Find P (Yc).

However, for two different n-cycles c and c′, Yc and Yc′ are not independent
as they were when the event were that Gn,p is c, so we cannot get a precise value
for the probability that GN,p contains any n-cycle by using the subadditivity of
probability.

But we can get a bound using the expected number of cycles. If the expected
number of cycles is much less than 1, then the probability of a cycle is low. If
the expected number of cycles is much more than 1, then the probability of a
cycle is high.

We observed in Example 2.1.3 that Gn,p can be viewed as a random vector
of N =

(
n
2

)
independent RVs Xi. To count the expected number of edges we
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find the expected value of the RV M =
∑N
i=1Xi which essentially counts edges

of Gn,p.

We use the same setup to count the number of copies of any substructure:
define an indicator variable for each possible occurence, and a ‘counting’ variable
as the sum of the indicators. Then the expected value of this counting variable
is the expected number of copies of the substructre in Gn,p.

Example B.2.2. Every permutation of the set [n] determines an n-cycle on
[n], but each cycle is determined by 2n such permutations, so there are n!/2n
different n-cycles in Gn,p. Let Yc =

∏
e∈cXe indicate the event that the cycle

c is in G. Then E(Yc) = E(Xe)
n = pn. Let Cn =

∑
Yc count the number of

n-cycles in G. Then by the additivity of expectation we have that the expected
number of n-cycles in G is

E(Cn) =
∑
c

E(Yc) = n!/2n · pn ≈ (np)n.

Problem B.2.3. Show that the expected number of k-cycles is

E(Ck) =
n!

(n− k)!2k
· pk < (np)k/k

and that the expected number of cycles of any girth is

E(C) =

n∑
k=3

(np)k/k.

Now when p = 1/n we get that

E(C) =

n∑
k=3

(np)k/k <

n∑
k=3

1/k <

ˆ n−1

3

1/x dx < ln(n/2),

which is a pretty small number; bigger than, but close to 1. By taking p a tiny
bit bigger, we will have a very good probabilty that Gn,p contains a cycle. On
the other hand, by taking p a bit smaller, we will see that Gn,p almost never
contains a cycle.

We have to introduce some language for these ideas.

B.3 Asymptotics and thresholds

Definition B.3.1. Recall that for functions f, g : N→ R we write f = o(g) if

lim
n→∞

f(n)

g(n)
= 0.

Problem B.3.2. Show that
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i) f = o(1) if and only if limn→∞ f(n) = 0.

ii) p = o(1/n) if and only if limn→∞ pn = 0.

Example B.3.3. We show that if p = o(1/n) then E(C) = o(1), where C is
the random variable counting the number of cycles in Gn,p.

Indeed, if p = o(1/n) then for every ε > 0 there is some Nε such that n > Nε
implies that np < min(ε, 1/2). So

E(C) =

n∑
k=3

(np)k/k < ε

n∑
k=3

1/(2k−1k)

< ε

n∑
k=2

1/2k < ε

This gives us that E(C)→ 0, as needed.

Definition B.3.4. Any event C ⊂ C in the sample space of the random graph
Gn,p ∼ (X1, . . . , Xm) is a property. The probability that Gn,p has a property C
is P (C). If P (C) → 1 as n → ∞ then C occurs asymptotically almost surely
(aas) or with high probability (whp) aas.

Problem B.3.5. Using Markov’s inequality, show that if p = o(1/n), then
where C is again the random variable counting the cycles in Gn,p, show that
the property C = 0 occurs aas.

It might be suprising therefore that if p = (1 + ε)/n then ass C ≥ 1. This is
called a threshold.

Definition B.3.6. For a property C of the random graph Gn,p, a threshold for
C is a probability p0 such that if p/p0 = o(1) then aas C doesn’t occur, and if
p0/p = o(1) then aas C does occur.

Theorem B.3.7. Containing a cycle is a property of Gn,p. The value p0 = 1/n
is a threshhold for this property.

Proof. We have shown that if p = o(1/n), so if p/p0 = o(1), then ass Gn,p
contains no cycles. We have to show that if p0/p = o(1), so if p/n → ∞ then
Gn,p almost surely has a cycle. This uses the simple observation that if Gn,p
has at least n edges, then it must contain a cycle. So we show that if p/n→∞,
then ass Gn,p has at least n edges.

As before, let M =
∑N
i=1Xi be the random variable counting the edges of

Gn,p. We saw that µ = E(M) = pN = p·n·n−1
2 . Lets compute the variance σ2
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of M . As

E(M2) = E(M ·
∑

Xi) =
∑

E(M ·Xi) = NE(M ·Xi)

= NE(
∑

Xj ·Xi) = N(N − 1)E(Xi ·Xj) +NE(X2
i )

= N(N − 1)p2 +Np = Np(p(N − 1) + 1),

we get that

σ2 = E(M2)− µ2 = Np(p(N − 1) + 1−Np) = Np(1− p) < µ.

Taking p ≥ 5/n we get that µ > 2n so by Chebyshev’s inequality we there
for get that

P (M > n) > P (|M − 2n| < n) = P (|M − µ| < n) > 1− σ2

n2
> 1− 2

n
.

As p/n→∞, we have for large enough n that p > 5/n, and so P (M > n) >
(1− 2

n )→ 1.

What we have done in this proof is shown that the distribution M is ‘con-
centrated’ around its mean µ, and that this concentration increases as n does.
An important fact that we will soon expand on.
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3 Some Special Distributions

3.1 Binomial and Related Distributions

We have given a name to only one distribution so far: the uniform distribution
whose pdf or pmf is constant on its support. There are several other distributions
that occur repeatedly in mathematics and statistics. One of the most basic is
the Binomial Distribution, which we build from the following distribution, which
we will recognise as the distribution of outcomes when tossing a p-coin.

3.1.1 The Bernoulli Distribution

pX(x)

{
p if x = 1
1− p otherwise.

µ p
σ2 pq
MX(t) pet + q

Bernoulli X ∼ b(1, p)

Definition 3.1.1. An RV X has a Bernoulli distribution, or is a Bernoulli RV,
if its support is {0, 1}. Its pmf is

f(x) =

{
p if x = 1
1− p otherwise,

for some probability p ∈ [0, 1].

If X is a Bernoulli distribution with probability p, then its mean is µ = p
and its variance is σ2 = p(1− p) = pq.

Indeed, µ = p · 1 + (p− 1) · 0 = p, and E(X2) = p · 12 + (p− 1) · 02 = p, so
σ2 = E(X2)− µ2 = p− p2 = p(1− p).

The Bernoulli distribution of probabilitly p is thus more often called the
Bernoulli distribution of mean p.

3.1.2 The Binomial Distribution

pX(x)
(
n
x

)
px(1−p)n−x

µ np
σ2 npq
MX(t) (pet + q)n

Binomial X ∼ b(n, p)

Often a probabilitly space consists of n independent Bernoulli spaces. The
random graph Gn,p is an example of this, the experiment of tossing 100 p-coins
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is a simpler example. When tossing 100 p-coins, the only random variable of
any interest is that which counts the number of times we the outcome is ’heads’.
This is the Binomial distribution.

Definition 3.1.2. A random variable Y has the Binomial distribution b(n, p)
if

Y =

n∑
i=1

Xi

for a family {Xi}i∈[n] of iid Bernoulli RVs with mean p.

Clearly the pmf of Y ∼ b(n, p) is

f(y) =

(
n

y

)
py(1− p)n−y

on its support y = 0, 1, . . . , n. By the linearity of expectation, its mean is

µ = E(Y ) =

n∑
i=1

E(Xi) =
∑

p = np.

The random variable M counting the edges of Gn,p is the binomial distribu-
tion b(n, p). We did the following in the proof of Theorem B.3.7.

Problem 3.1.3. Show that the variance of Y ∼ b(n, p) is σ2 = np(1− p).

The ’concentration’ part of the proof of Theorem B.3.7 can be viewed in the
following way.

Example 3.1.4. If Y ∼ b(n, p), then Y/n can be viewed as the ’rate of success’
of the trials X1, . . . , Xn making up Y . Clearly E(Y/n) = E(Y )/n = np/n = p,
and one can show that Var(Y/n) = p

1−pn. So by Chebyshev,

P (|Y/n− p| ≥ ε) ≤ Var(Y/n)

ε2
=
p(1− p)
nε2

→ 0.

This means that the rate of success of the trials Xi is more and more con-
centrated around p as n gets bigger. This is an example of the Law of Large
Numbers.

The mgf of X ∼ b(n, p) is

MX(t) =

n∑
x=0

ext
(
n

x

)
pxqn−x =

n∑
x=0

(
n

x

)
(pet)xqn−x

= (pet + q)n.

Problem 3.1.5. Use the mgf to find µ and σ2 of X ∼ b(n, p).
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Problem 3.1.6. Show that if Xi ∼ b(ni, p) for i = 1, . . . , d then Y =
∑d
i=1Xi

has distribution b(
∑d
i=1 ni, p).

We do not do much with the rest of the distributions in this section. We
simply define them so that we have seen them.

3.1.3 The geometric and negative binomial distributions

For the binomial distribution b(n, p) we conducted n independent Bernoulli
trials with mean p and counted the number of successes. For the Geometic
distribution Y , we conduct Bernoulli trials with mean p until there is a success.
We let Y count the number of failures.

Formally, the geometric RV with parameter p is the RV with pmf

p(y) = (1− p)y · p.

More generally the negative binomial RV with parameters p and r is the RV
that counts the number of failures that occur, when conducting Bernoulli trials
b(1, p), until the rth success. It has pmf

p(y) =

(
y + r − 1

r − 1

)
pr(1− p)y.

3.1.4 The Hypergeometric Distribution

pX(x)
(N−Dn−x )(Dx)

(Nn)
µ nDN
σ2 nDN

N−D
N

N−n
N−1

Hypergeometric

In a lot of N items, D are defective. We choose n items. The RV X
that counts the number of chosen items that are defective is a hypergeometric
distribution. Its pmf is

p(x) =

(
N−D
n−x

)(
D
x

)(
N
n

) .

The expected value of X is

E(X) =

n∑
x=0

xp(x) =
∑(

N −D
n− x

)(
D

x

)(
N

n

)−1

.

Using that b
(
a
b

)
= a

(
a−1
b−1

)
and so(

a

b

)
=
a

b

(
a− 1

b− 1

)
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